Inducing and modulating anisotropic DNA bends by pseudocomplementary peptide nucleic acids.
نویسندگان
چکیده
DNA bending is significant for various DNA functions in the cell. Here, we demonstrate that pseudocomplementary peptide nucleic acids (pcPNAs) represent a class of versatile, sequence-specific DNA-bending agents. The occurrence of anisotropic DNA bends induced by pcPNAs is shown by gel electrophoretic phasing analysis. The magnitude of DNA bending is determined by circular permutation assay and by electron microscopy, with good agreement of calculated mean values between both methods. Binding of a pair of 10-meric pcPNAs to its target DNA sequence results in moderate DNA bending with a mean value of 40-45 degrees, while binding of one self-pc 8-mer PNA to target DNA yields a somewhat larger average value of the induced DNA bend. Both bends are found to be in phase when the pcPNA target sites are separated by distances of half-integer numbers of helical turns of regular duplex DNA, resulting in an enhanced DNA bend with an average value in the range of 80-90 degrees. The occurrence of such a sharp bend within the DNA double helix is confirmed and exploited through efficient formation of 170-bp-long DNA minicircles by means of dimerization of two bent DNA fragments. The pcPNAs offer two main advantages over previously designed classes of nonnatural DNA-bending agents: they have very mild sequence limitations while targeting duplex DNA and they can easily be designed for a chosen target sequence, because their binding obeys the principle of complementarity. We conclude that pcPNAs are promising tools for inducing bends in DNA at virtually any chosen site.
منابع مشابه
Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes
The development of molecular strategies that enable recognition of specific double-stranded DNA (dsDNA) regions has been a longstanding goal as evidenced by the emergence of triplex-forming oligonucleotides, peptide nucleic acids (PNAs), minor groove binding polyamides, and--more recently--engineered proteins such as CRISPR/Cas9. Despite this progress, an unmet need remains for simple hybridiza...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملDouble duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA.
Pseudocomplementary PNAs containing diaminopurine.thiouracil base pairs have been prepared and are shown to bind with high specificity and efficiency to complementary targets in double-stranded DNA by a mechanism termed "double duplex invasion" in which the duplex is unwound and both DNA strands are targeted simultaneously, each by one of the two pseudocomplementary peptide nucleic acids (PNAs)...
متن کاملCan pseudocomplementary peptide nucleic acid nucleases (pcPNANs) be a new tool for genetic engineering?
Abstract: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. Although these technologies have begun to enable targeted genome modifications, there remains a need for new technologies that are scalable, affordable, and easy to engineer. In this paper, we propose a ...
متن کاملPseudocomplementary PNAs as selective modifiers of protein activity on duplex DNA: the case of type IIs restriction enzymes.
This study evaluates the potential of pseudocomplementary peptide nucleic acids (pcPNAs) for sequence-specific modification of enzyme activity towards double-stranded DNA (dsDNA). To this end, we analyze the ability of pcPNA-dsDNA complexes to site-selectively interfere with the action of four type IIs restriction enzymes. We have found that pcPNA-dsDNA complexes exhibit a different degree of D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 20 شماره
صفحات -
تاریخ انتشار 2004